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Abstract 

 

The beam-based alignment and feedback systems, essential for the future colliders, need 

high resolution Beam Position Monitors (BPM). In the framework of the European 

CARE/SRF program, the task of CEA/DSM/DAPNIA covers the design, the fabrication and 

the beam test of these BPMs in collaboration with DESY. The objective of this program is the 

production of a BPM that has a resolution five times better than the existing device while 

maintaining a high time resolution and which can be used in a clean environment at cryogenic 

temperature. Two prototypes of this monitor, based on a radio-frequency cavity with a beam 

pipe diameter of 78 mm, are installed on the Free Electron LASer in Hamburg (FLASH).  
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Introduction 
 

This paper presents the evolution of a re-entrant cavity beam position monitor (BPM), 

developed by the CEA Saclay in collaboration with DESY, in the framework of the 

CARE/SRF European program.  

This BPM is composed of a radio-frequency re-entrant cavity with a beam pipe diameter 

of 78 mm, four feedthroughs and a signal processing electronics. The mechanical and signal 

processing designs are a compromise to get a high position resolution and a high time 

resolution. It is specially designed to be connected to superconducting cavities, environment 

where dust contamination has to be avoided.  

The Free electron LASer in Hamburg (FLASH) linac at DESY was known as the VUV-

Free Electron Laser (VUV-FEL) and it is also used as a test facility for the X-ray Free 

Electron Laser (XFEL) and for the International Linear Collider (ILC) study under the name 

TESLA Test Facility-Phase 2 (TTF2). 

A first prototype of a re-entrant BPM has delivered measurements at 2K inside the first 

cryomodule (ACC1) on the FLASH linac. The performances of this BPM are analyzed and 

the limitations of this existing system clearly identified. Finally, the solution which requires a 

new design for both the BPM cavity and the signal processing electronics was been adopted. 

With this new BPM, the position resolution is expected to be better than 10 µm and the time 

resolution is high enough to ensure bunch to bunch measurement for XFEL or ILC. This 

second prototype has been qualified with beam in a warm section of the FLASH accelerator, 

achieving 4 µm resolution over a dynamic range of ± 5 mm. 

This paper describes the theoretical performances of this system and the measurements 

carried out with beam on the FLASH linac. 
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Re-entrant cavity BPM Design 
Coaxial re-entrant cavity has been chosen for the beam orbit measurement because of its 

mechanical simplicity and excellent resolution. This cavity is composed of a mechanical 

structure which consists in three distinct regions: beam tube (I), gap (II) and coaxial cylinder 

(III) (Fig. 1), with four orthogonal feedthroughs. It has a small size and a cylindrical 

symmetry which allows a high precision of the machining. Arranged around the beam pipe 

the cavity forms a coaxial line which is short circuited at the downstream end [1]. 

The cavity is fabricated with stainless steel as compact as possible. Its length is 170 mm 

to satisfy the constraints imposed by the cryomodule. The aperture of the cavity is 78 mm 

(aperture of an TTF cavity), the gap (g) is 8 mm and the length of the coaxial cylinder is 

50 mm as shown Fig.1. The fixing of the antenna tips to the inner diameter of the cavity over 

coupled the cavity. 

 

 
FIGURE 1: Geometry of the re-entrant cavity BPM. 

 

Passing through this cavity, the beam excites some electro-magnetic fields (resonant 

modes), which are coupled by four feedthroughs to the outside: two of them determine the 

horizontal position (X position) and two others the vertical position (Y position).  

The main radio-frequency modes excited by the beam in the cavity are monopole and 

dipole modes. The signal voltage of the monopole mode (type TM010) is proportional to 

beam intensity and does not depend on the beam position. This signal will be used for the 

normalization. The dipole mode (type TM110) voltage is proportional to the intensity and to 

the distance of the beam from the centre axis of the monitor. The higher order modes are 

damped much more strongly so their contribution is negligible and the linearity of the 

measurement is ensured. 

As shown on the Fig. 2, the beam position (X and Y) can be calculated by the ratio of 

the difference of voltages V1 - V3 and V2 - V4 which correspond to the voltage of the dipole 

field with the sum V1 + V3 and V2 + V4 which correspond to the voltage of the monopole 

filed in the both axis. 

 

 

l 50 mm 

g 8 mm 

R1 39 mm 

R2 41.5 mm 

R3 49.5 mm 
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FIGURE 2: Resonant modes of the re-entrant cavity. 

 

Two re-entrant BPMs are installed on FLASH linac at DESY. The first is operated at 

cryogenic temperature inside the cryomodule, in an environment where dust particle 

contamination has to be avoided. The second is installed on a warm part of the linac to be 

qualified with beam. 

BPM installed in a cryomodule 
An existing BPM designed for the TTF injector was installed in a cryomodule to carry 

out some measurements with beam [2].  

Cavity BPM 

The re-entrant cavity (Fig.3) was installed in 2004 at cryogenic temperature inside a 

cryomodule (ACC1) on the FLASH linac.  

 
Fig.3: Drawing of the re-entrant cavity installed in the cryomodule 

 

Figure 4 shows this monitor before insertion into the cryomodule. 

 

V4 

V2 

V3 V1 

Dipole  

field 

 

Monopole 

field 

V1 = V(monopole) + V(dipole) 

V2 = V(monopole) + V(dipole) 

V3 = V(monopole) - V(dipole) 

V4 = V(monopole) - V(dipole) 

 

X = L (V1 - V3) / (V1 + V3) 

Y = L (V2 – V4) / (V2 + V4) 

L = constant 
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FIGURE 4: BPM installed in a cryomodule with four feedthroughs protected by plastic 

cylinders during mounting. 

 

The RF characteristics of this cavity (eigenmodes frequencies, quality factors and 

longitudinal R/Q) are calculated with the HFSS code provided by Ansoft Corporation. The 

results are given in Table 1. 

 
TABLE 1. RF characteristics of the BPM installed in the cryomodule. 

Eigen modes F (GHz) Qext R/Ql (Ω) at 5 mm  R/Ql (Ω) at 10 mm  

Monopole mode 1.58 2.15 20.2  20.4  

Dipole mode 2.01 4.11 0.53  2.20  

Quadrupole mode 2.25 0.97 0.01  0.01 

 

The quality factors Q are determined by HFSS with matched feedthroughs in eigen 

solver mode. With Matlab and the HFSS calculator, the R/Q ratio was computed (R: the Shunt 

impedance and Q: quality factor) with the following formulae: 

 

          (1) 

 

 

with         where  k= w/c  and W is the stored energy in the mode 

 

Table 1 shows a coupling which is very high, the first monopole and dipole modes have 

respectively a quality factor Q = 2 and Q = 4. With those low values, the signals are spread 

out in spectrum, the distinguishing of monopole and dipole modes is not easy and the 

monopole signal is not, efficiently, rejected. 

Signal processing 

The beam position can be measured from the output voltage of a pair of feedthroughs 

mounted on the opposite sides of the cavity on both axes. Signals detected by the signal 

processing electronics extract the beam position (displacement) and deliver this information 

to the acquisition board. Due to the low external quality factor, the single bunch response of 

the cavity has to be broadened before its acquisition. The 8 MHz bandwidth of this filter 

defines the bandwidth of the system and determines the time resolution [3]. The signal 

processing uses a single stage down conversion to obtain ∆/Σ. The chosen measurement 

frequency, is 650 MHz. This frequency is a multiple of the repetition bunch frequency 
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(216.66 MHz) on the first TTF injector and is defined by a Bessel bandpass filter used in the 

signal processing electronics. 

Two boxes compose the electronics of this BPM: the calibration box and the 

synchronous detection box (Fig. 5). A 180° hybrid junction, connected to each pair of 

opposite antennae with 33 m of semi-rigid cables, yields the sum and the difference of RF 

voltages proportional to the beam current and position. These RF signals are then filtered, 

amplified and demodulated with a synchronous detection. The sum signal is used as a local 

oscillator signal for the mixer. The acquisition is carried out either by standard COMET 

boards of the TTF control system, or by dedicated boards to other applications.  

 
 

FIGURE 5: Signal processing electronics of the BPM installed in a cryomodule. 

 

Beam tests on the BPM installed in the cryomodule 
 

In March 2006, a calibration was carried out on the BPM installed in a FLASH 

cryomodule. It was operated in single bunch for these measurements which produced 

statistics and correlations. To calibrate this BPM called 9ACC1, the following method was 

used. The relative beam displacement at the BPM location was calculated in using a transfer 

matrix between steerers and BPM (made of drifts and accelerating cavities) for different 

values of drive current in the steerers: 

'*12 xRx ∆=∆  (where ∆x’ is the beam angle at steerer). 

 

The HOM (Higher Order Mode) signals [4] from the closest cavity to the BPM installed 

in the cryomodule, were minimized thanks to beam steering. This minimization gave an 

estimation of the BPM centre. The beam tilt was neglected due to the closeness of BPM 

9ACC1 to this cavity. An offset on ∆x and ∆y channels was added in the acquisition software 

to read a zero in this condition. Another calibration coefficient was computed from a linear fit 

of the predicted position to the measured position. The relative beam position is calculated for 

each steerer setting in using a transfer matrix between steerers and BPM made of drifts and 

accelerating cavities. With this calibration method, the re-entrant BPM showed a linear range 

about ± 1.5 mm before saturation due to amplifiers or analog to digital converters.  

 

On the Fig.6, the plots of the predicted position vs. the position read by 9ACC1, on X 

and Y channels are presented. The nominal bunch charge is about 1 nC.  
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FIGURE 6: Position read by 9ACC1 vs. the predicted position in horizontal and vertical 

steering 

 

The raw RMS resolution of the system directly measured by the standard deviation of 

the readings from 9ACC1 is around 50 µm on the X channel. In correlating the reading of the 

re-entrant BPM in one plane against the readings of all other BPMs in the same plane, the 

BPM resolution can be measured [5]. The beam jitter can be canceled and the position 

resolution can be estimated around 20 µm. On the Y channel, the resolution is around 30 µm 

after the beam jitter cancellation and around 70 µm as a raw measurement. 

These results show the limitation of the system as shown with the theoretical results [6]. 

Moreover, due to the bandpass filter bandwidth, which is only 8 MHz, the bunch to bunch 

measurement on the FLASH linac and XFEL is impossible for this BPM system. A new 

design is therefore necessary to achieve a position resolution better than 10 µm and have the 

possibility to perform bunch to bunch measurements. 

New design of the re-entrant BPM  
To improve the time resolution and position resolution of the re-entrant BPM which has 

already proved its capability to be operated at cryogenic temperature inside the cryomodule, a 

new BPM system was designed. 

Cavity BPM 

The principle of the re-entrant cavity and the main dimensions of the cavity are kept: the 

gap 8 mm, the coaxial cylinder, 170 mm in length, 78 mm for the beam pipe and 152 mm in 

diameter as shown Fig. 7.  
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FIGURE 7: Drawing and photo of the modified BPM cavity. 

 

The resolution better than 10 µm but also the mechanical feasibility of the structure 

determined the quality factors, Q, of the monopole and dipole modes. They are not able either 

to be too high to keep a time resolution around 10 ns or too low to have a resolution better 

than 10 µm.  

In order to get a higher Q and therefore a longer signal in time without the need of a 

Bessel filter for signal shaping, the feedthroughs are moved 31.5 mm in the re-entrant part 

(Fig. 7). This antenna position reduces the magnetic loop coupling and increases the 

separation of the RF modes (monopole and dipole modes). Monopole and dipole signals have 

a better distinction and the rejection of the monopole signal is easier. 

Antennas are assembled to the cavity by a conflat gasket (standard CF DN16) and fulfill 

the conditions of Ultra High Vacuum (UHV). Some copper-beryllium radio-frequency 

contacts were welded in the inner cylinder of the cavity to ensure electrical conduction 

between the feedthrough inner conductor and the cavity (Fig. 8), providing a magnetic 

coupling loop. In the past, a critical point concerned the feedthrough fragility; 50% of the 

feedthroughs had to be rejected. With this new design, the machining of feedthroughs is 

simpler and the final product more robust. Several cryogenic and vacuum tests (thermal 

shock) were carried out on the RF feedthroughs with success. 

One of the biggest problems on the cavity installed in the cryomodule was the cleaning. 

As the BPM is designed to be used in a clean environment, twelve holes of 5 mm diameter are 

drilled at the end of the re-entrant part for more effective cleaning. Cleaning tests were 

successfully performed at DESY and validated the system for the cleaning.  

 
FIGURE 8: Design of the new feedthrough 
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The resonant cavity is, first, simulated with the software HFSS (Ansoft) to determine its 

frequencies, quality factors and R/Q. The RF measurements, presented in Table 2, compare 

some computed quantities to measured values. Figure 9 shows some electrical field plots for 

the monopole and dipole modes. 

 

 
FIGURE 9: Electrical fields for the monopole and dipole modes 

 

Spring 2006, during the maintenance time, the re-entrant BPM was installed in a warm 

part in the FLASH linac (Fig. 10) at DESY.  

 

FIGURE 10: Re-entrant cavity BPM installed in the FLASH linac 

 

After this mounting, the first RF measurements were carried out on the cavity BPM. The 

RF measurements, presented in Table 2, provide a comparison that gives information on the 

sensitivity of the RF characteristics to the machining, mounting and operating environments.  

 

The monopole and dipole modes are around 1.25 GHz and 1.72 GHz and the quality 

factors are quite low. The others modes of the cavity which have an eigen frequency higher 

than the beam pipe TE11 mode cut off frequency (2.25 GHz) are damped. Their contribution 

is negligible and the linearity of the measurement is ensured. 

TABLE 2. RF characteristics of the new re-entrant BPM. 

Eigen 

modes 

F (MHz) Qext R/Ql (Ω)  

5 mm offset 

R/Ql (Ω)  

10 mm offset 

 Calculated Measured Calculated Measured Calculated Calculated 

Monopole 

mode 

1250 1255 22.95 23.8 12.9  12.9  

Dipole mode 1719 1724 50.96 59 0.27 1.15 
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The reflection measurement on each pick up gives nearly the same results with only 

±0.07 dB. The four pickups mounted on the BPM are therefore quite identical. 

Each dipole mode orthogonal polarization was measured and shows slightly different 

eigenfrequencies; the relative difference is, however, less than 2 per 1000. Furthermore, the 

perfect polarization orthogonality is lost. Due to the finite tolerances in machining, welding 

and mounting, some small distortions of cavity symmetry are generated. A displacement of 

the beam in the ‘x’ direction gives not only a reading in that direction but also a non-zero 

reading in the orthogonal direction ‘y’ (Fig. 11).  

 
FIGURE 11: Cross-talk illustration 

 

This asymmetry is called cross talk. Cross-talk isolation measurements are performed on 

the re-entrant cavity with a network analyzer. The transmission is first measured between two 

opposite antennas, the two other antennas are terminated with a 50 Ω load. In this 

configuration, the monopole and dipole modes are excited as displayed in the Fig. 12. At the 

dipole frequency (1.72 GHz), the transmission level was measured around -0.8 dB. 

FIGURE 12. Monopole and dipole transmission measured by the network analyzer 

 

For the second configuration, the signal transmission is measured between antennas 

positioned at 90° through a 180° hybrid coupler as shown in Fig. 13. The corresponding 

transmissions are displayed in Fig. 14. From those measurements, the cross-talk isolation 

value is estimated about 41 dB measured in laboratory instead of around 33 ±1 dB measured 

in the tunnel. This difference could be explained by the fact that the boundaries conditions are 

different during the measurements in laboratory and in the tunnel. 
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Figures 15a and 15b represent the signal measured on one pickup with a 5 GHz 

bandwidth scope. 

 

FIGURE 15a & 15b: Signal from one antenna. 

 

Figure 15a represents the same signal than the one in Fig. 15b but the time base is 

longer. It shows a clean separation between two macropulses distant to 1 µs. No long range 

echo is observed, confirming the possibility for measurements in a multi-bunch mode.  

Figure 16 shows the Fourier transform of a signal on the output of one pickup. The step 

around 3 GHz fits with the 2.94 GHz cut-off frequency of the beam pipe mode (TM01). The 

modes, having a frequency above can propagate in the beam pipe. Conversely, the 

disturbances above the cut-off frequency from elsewhere can also propagate down to the 

BPM. 

 

FIGURE 16: Pickup signal spectrum 

Figure 13. Representation of the cross talk  

measurement. 

Figure 14. Signal coupled between 

two antennas positioned at 90°. 



EU contract number RII3-CT-2003-506395 CARE-Report-2007-038-SRF 
 

 - 12 - 

The transmission measurement on the opposite antennae was completed in the 1 to 

4 GHz range (Fig. 17). All peaks correspond to eigenmodes present in the re-entrant cavity. 

The first and second peaks are the monopole and dipole modes, the others are higher order 

modes which can propagate out of the cavity through the beam pipe. The 1.72 GHz band pass 

filter, used in the signal processing, was measured in laboratory and at 3 GHz, its attenuation 

is around -70 dB and around -60 dB at 4 GHz. These ‘higher order modes’ should be therefore 

well rejected. 

 

FIGURE 17: Transmission measurement on the two opposite antennas without beam 

RF Signal Processing Electronics 

 

The signal processing uses a single stage down conversion to obtain ∆/Σ and is shown in 

Fig. 18. It is composed of standard RF components: hybrid couplers, phase shifters, filters, 

isolators and mixers. The lowpass filter behind the mixer has a bandwidth about 60 MHz, 

which determines the lowest bandwidth in the signal processing.  

 

 
FIGURE 18: RF signal processing electronics 

 

The ∆ and Σ signals are obtained from a passive 4-ports 180° hybrid. The 180° hybrid 

coupler is connected to each pair of opposite antennas with some semi-rigid cables. The 

rejection of the monopo le mode, on the ∆ channel, proceeds in three steps: 

- a mode symmetry based rejection with a hybrid coupler. Its isolation is higher than 

20 dB in the range of 1 to 2 GHz. A local enhancement of the isolation to be about 30 dB at 

the frequency of the dipole mode can be obtained with additional external phase shifters and 

attenuators. 

- a frequency domain rejection with a band pass filter centered at the dipole mode 

frequency. Its bandwidth of 110 MHz also provides a noise reduction. 
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- a synchronous detection of the dipole mode signal. A 9 MHz reference signal, from the 

linac control system is combined with a PLL to generate a local oscillator signal (LO) for the 

mixers at the dipole mode frequency. Phase shifters are used to adjust the LO and RF signals 

in phase.  

The digital electronics, also, makes the sampling, the calibration of the system and the 

control-command interface. The signal on the Σ channel is used in order to normalize the ∆ 

signal, which determines the position of the beam. This normalization is, also, made by a 

digital electronics.  

Summer 2006, the two subsystems, composing the signal processing, were installed and 

calibrated: 

- a subsystem composed with hybrid couplers, phase shifters and one combiner was 

installed in the tunnel (Fig. 19) during the maintenance day. The spectrum analysis of the 

"delta" signals from the 180° hybrid coupler output shows good common mode rejection. 

Tuning of the phase shifters gives a high common mode rejection (30 dB at 1.25 GHz). 

 

 
FIGURE 19: Re-entrant cavity BPM and subsystem with hybrid couplers and phase shifters 

installed in the FLASH linac 

 

- the second subsystem (Fig. 20) was installed in the hall, outside the tunnel. The 

synchronous and direct detectors, as well as limiters for protection were adjusted to have a 

linearity range around ± 10 mm. 

 
FIGURE 20: Signal processing electronics located in the hall 

 

The spectrum analysis of the "delta" signals from the 180° hybrid coupler output shows 

good common mode rejection. Phase tuning for the synchronous detection was refined while 

visualizing the delta/sigma signal on a scope. The video amplifier gain was adjusted to ± 1 V 

to avoid saturation from ADCs. Figure 21 shows the signals from video amplifier outputs of 

∆x and ∆y channels. 
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FIGURE 21: Signals at video amplifier outputs, ∆x (left) and ∆y (right). 

 

Estimation of the performances for different BPM systems 

Position Resolution and Offset 

 

The position resolution is the minimum position difference than can be statistically 

resolved. It is an RMS value related to the signal to noise ratio in the system. The signal 

voltage of the BPM is determined by the beam’s energy loss to the dipole mode and by the 

external coupling of the coaxial cable. 

To assess the performance of the system, a model (cavity+signal processing) is 

elaborated with a Mathcad code based on Fourier transforms. The simulation covers a span 

from 0 to 20 GHz. Each mode of the cavity is modeled as a resonant RLC circuit. The 

delivered time domain signal is therefore determined by the RF characteristics of each mode. 

The single bunch response of the cavity depends on frequency ωi and quality factor Qi of the 

mode. The signal from a pickup is the sum of all resonant modes excited by the beam. 
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where Φ(t) is the Heaviside function, q the bunch charge, R0 the 50 Ω cable impedance, 

R/Qi defines the coupling to the beam and ζi = 4 if it is a monopole mode or ζi = 2 if it is a 

dipole mode. 

To simulate the signal processing, the transfer functions of different components are 

used. A description of the method is given for the ∆ channel (Fig. 22). 
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FIGURE 22: ∆ channel signal processing  

 

The transfer function of cables (Hc) takes into account the effect of attenuation and 

dispersion. The length of cables was chosen to be around 33 m. The model of the 180° hybrid 

couplers composing the signal processing is derived from measurements with a network 

analyzer: the transmission measurement from the port 1 to port ∆, as shown Fig. 23, gives the 

transfer function ‘Hdiff1’, the transmission from the port 2 to the port ∆ gives ‘Hdiff2’. 

The same measurements are made with the port Σ to determine ‘Hsum1’ and ‘Hsum2’. 

 

 

FIGURE 23: S parameters measurement of the hybrid 180° 

 

The hybrid isolation is determined by the following relation : 

( )21log*20 HdiffHdiffhybridI +=                   (4) 

Those hybrid couplers have an isolation higher than 20 dB in the pass-band of 1-2 GHz 

but are different in details especially outside the pass-band (Fig. 24). 

 
FIGURE 24: Isolation of two 180° hybrid items. 

 

A local enhancement of the isolation can be obtained with adjusting of the phase and 

attenuation. The ∆ signal from the hybrid is given by the following relation: 

( )( ) ( )( )[ ]2..1.. HdiffHSSHdiffHSST cdmcdm ++−=∆   (5) 

To validate the model, the "sum" signal peak power was measured around 36 dBm for 

0.9 nC, it is of the same order of magnitude compared to simulations.  

The band pass filter has a 110 MHz bandwidth centred at 1.72 GHz. Its transfer function 

is given by a CAD code. The filter output signal is the RF signal (Fig. 25a). The local 

oscillator (LO) signal is modelled by a sine wave at the dipole frequency with 1 Volt 

amplitude. A phase shift is added to put in phase the LO signal and the RF signal (without 

monopole mode) from the ∆ channel. Follows a 60 MHz lowpass filter, which the transfer 

function is given by the same CAD code. The IF output signal (with monopole mode) 

(Fig 25b) is, then, sampled at the peak for a significant beam offset around 10 mm. 
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FIGURE 25: RF (a) and IF (b) signals from the ∆ channel. 

 

The position resolution is limited by the signal to noise ratio of the system.  

The noise comes from the thermal noise and some components used in the signal 

processing electronics. For the estimation, only the thermal noise, the noise figure and the 

noise generated in devices are taken into account. The thermal noise of a system is given by 

the following equation: 

BWT
b

kPth **=                           (6) 

where kb is Boltzmann’s constant (1.38*10
-23

J/K), BW is defined by the bandwidth of 

the signal processing channel in Hertz, and T is the room temperature in Kelvin. 

The noise level present at the output of the cavity BPMs is amplified by the devices 

which compose the signal processing electrnics. To calculate the noise level, the thermal noise 

is added to the noise factor and to the gain. The noise level is therefore given by the following 

equation: 

.** thn PGNFP =                  (7) 

where NF is the total noise figure of the signal processing channel, G is the gain of the 

signal processing and Pth is the thermal noise. The total noise introduced into the system by 

the electronics can be evaluated by the noise figure in a cascaded system and is applied by the 

following formula: 
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where NF is the total noise factor of the signal processing, Fi and Gi are respectively the 

noise factor and the gain of component i. 

As the bandpass filter bandwidth (110 MHz) is larger than the one of the lowpass filter 

(60 MHz), the thermal noise power is defined by the lowpass filter bandwidth, i.e. BW is 

equal to 60 MHz in equation 6. The noise amplitude in the hall was measured on the ADC 

board and on a scope to be about 200 µV peak. The RMS environment noise is therefore 

around 6.5*10
-5

 V that limits the resolution for the re-entrant BPM. As the limitation of the 

resolution is due to the ADCs noise, to improve the resolution, the dynamic range has to be 

reduced.  

The following table 3 gives the signal behind the low pass filter with 10 mm and 1 mm 

beam offset, the total noise and the resolution. With a 1 mm beam offset, the signal processing 

electronics has been modified to get a better resolution, an amplifier with a gain around 18 dB 

has been added.  

 

TABLE 3. Signal and noise level calculated for the re-entrant BPM 

Systems Signal on ∆ channel 

(mV) 

Total noise 

(mV) 

Simulated 

resolution (µm) 

BPM with 10 mm beam offset 181 6*10
-3 

3.65 

BPM with 1 mm beam offset 149 3*10
-2 

0.45 
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Time Resolution 

 

One of the most important parameters for a BPM is the time resolution, which is usually 

identified to the damping time and is given by the following formula: 

.
*

1

BWπ
τ =  (9) 

where BW is the bandwidth in Hertz, defined by the relation: 

.

ld
Q

d
f

BW =  (10) 

with fd the frequency and Qld the loaded quality factor for the dipole mode. For bunch to 

bunch measurements, the time resolution has to be smaller than the space between bunches of 

the machine. The time resolution is therefore around 9.5 ns for the re-entrant BPM. It is lower 

than the separation between bunches on the FLASH linac (110 ns); the bunch to bunch 

measurements is therefore possible. 

In practice, the rising time to 95% of a cavity response signal is 3τ. For bunch to bunch 

measurements, the time resolution has to be smaller than the distance between bunches ∆T, 

the system has to verify the following equation: 

T∆≤τ6   (11) 

To evaluate the time resolution of the BPM systems (cavity+electronics), the model is 

used to simulate the output signal from the synchronous detection. The time resolution is 

therefore defined by the time interval at 5% of the peak voltage from the baseline.  

The length of the signal for the re-entrant BPM behind the signal processing electronics 

(Fig. 26) was measured around 40 ns. It confirms the possibility to carry out measurements in 

multi-bunch mode. 

 
FIGURE 26: Output Signal from the signal processing  

First beam tests of the new re-entrant BPM 

 

After the electronics calibration, the first beam tests of the re-entrant BPM, installed in 

the warm part on the FLASH linac, were carried out. The steerers were used to move the 

beam, and the magnets between the steerers and the BPM were switched off to reduce errors 

and simplify calculation. The relative beam position is calculated in using a transfer matrix 

between steerer and BPM for each steerer setting. An average of 500 points for each steerer 

setting is put. Our objective was to start the calibration of this BPM, for high precision beam 

position measurement in single bunch mode with a charge around 1 nC.  

Firstly, the deviation range was limited to ±5 mm for a more accurate calibration 

(Fig. 27).  

20 ns                

20 mV                

40 ns 
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FIGURE 27: Calibration results from horizontal (left) and vertical (right) steering 

 

The linearity in this calibration range ±5 mm is very good for both channels. Then, the 

standard deviation of the calibrated position measurement was plotted for the horizontal and 

vertical steerings (Fig. 28). 

 
FIGURE 28: Standard deviation of the position measurement (calibrated) 

 

The minimum standard deviation of the measurements at the BPM center is around 

40 µm for X channel and around 30 µm for Y channel. But those results depend on the beam 

jitter, too. 

A second test period was necessary to validate the first results, the deviation range was 

limited to ±10 mm for a more accurate calibration. The position measured by the re-entrant 

BPM vs. the calculated position was plotted for the horizontal and vertical steerings (Fig. 29).  

 
FIGURE 29: Position read by new re-entrant BPM vs. the predicted position from horizontal 

(left) and vertical (right) steering. 
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Figure 29 shows a good linearity in a range ± 5 mm. The BPM resolution has been 
measured by correlating the reading of the re-entrant BPM in one plane against the readings 

of all other BPMs in the same plane [5]. In keeping the same dynamic range, the resolution 

was measured, on the Y channel, around 4 µm and on the X channel around 8 µm limited only 

by the electromagnetic contamination in the experimental hall. Those results are quite similar 

to the theoretical resolution calculated around 3.65 µm with 10 mm beam offset.  

The charge of the re-entrant BPM was calibrated thanks to the toroids and its resolution 

is around 6.35 pC.  

To improve the linearity dynamic range, a 6 dB attenuator was added on each channel. 

Figure 30 shows the position read by the re-entrant BPM versus the predicted position in 

horizontal and vertical steerings. With this new configuration, the re-entrant BPM has a good 

linearity in a range ± 10 mm with a 0.8 nC charge.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 30: Position read by the re-entrant BPM vs. the predicted position in vertical 

steering with a 0.8 nC charge. 

 

Then, the charge was modified to study the linearity and the resolution of the re-entrant 

BPM. Figure 31 shows linearity in a range ± 15 mm with a 0.45 nC charge. We suppose that 

this difference of range linearity between a charge around 0.8 nC and a charge around 

0.45 nC, is due to the saturation of the limiter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 31: Position read by the re-entrant BPM vs. the predicted position in vertical 

steering with a 0.45 nC charge. 

--- dx Button BPM 

--- dy Button BPM 

--- dx re-entrant BPM 

--- dy re-entrant BPM 

0.8 nC 

--- dx Button BPM 

--- dy Button BPM 

0.45 nC 
--- dx re-entrant BPM 

--- dy re-entrant BPM 
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As shown Fig. 30, Fig. 31 and Table 4, in moving the charge, the linearity is always 

good but the resolution is degraded. Table 4 shows a comparison of the resolution with 

different values of the charge and between a system with and without 6 dB attenuator. 

 
TABLE 4. Resolution of the re-entrant BPM 

Charge (nC) BPM (µm) BPM + 6 dB attenuator (µm) 

1 ~ 4  

0.8  ~ 12 

0.5 ~ 11.8 ~ 21 

0.2 ~ 30.1 ~ 55 

 

This BPM was designed to have the possibility to do some bunch to bunch 

measurements. The position of each bunch can be known and read by the re-entrant BPM as 

shown on Fig. 32. 

 

FIGURE 32: Position of 100 bunches in a macro-pulse read by the re-entrant BPM 

Conclusion 
 

This BPM is designed to be used in a clean environment, at cryogenic or room 

temperature. Its main features are the small size of the RF cavity, a large aperture (78 mm) 

and an excellent linearity. A first prototype has already proved its operation at cryogenic 

temperature inside a cryomodule, in an environment where dust particle contamination has to 

be avoided. The second installed on the warm section in the FLASH linac shown a high 

linearity in the range of ± 10 mm, and high position resolution below 10 µm (4 µm for the Y 

channel and 8 µm for the X channel) and has the possibility to do some bunch to bunch 

measurements.  

Few dozen of this BPM will be installed in the XFEL cryomodules and it appears, too, 

as a good candidate for being installed in the ILC cryomodules. 
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