

"Improved Standard Cavity Fabrication"

Paolo Michelato, Laura Monaco, Roberto Paulon, INFN Sezione di Milano, Lab. LASA

Work supported by the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395).

CARE JRA1 WP2 "Improved Standard Cavity Fabrication"

Task 2.2: Improved component design

Milestone 2.2.1.3: summary report on the status of art on ancillaries on the experience of various laboratories involved in SC RF.

Summary

This document describes and reports the information retrieving activity performed, in the CARE SRF context, for the Superconductive Cavities ancillaries.

The retrieving and the analysis of the experience of different laboratories working in the field of SC cavities is the first step foreseen for the modification both of the cavity design and the preparation procedure, to improve the performance and the reliability of the SRF accelerating system.

This document is mainly based on the experience of DESY (TTF 1, TTF 2), SNS, RIA and the European ADS activity.

We collected information as technical drawings, data, pictures, assembling procedures, materials, etc. relative to the following items: cold flanges, He tank, and cavity stiffening.

In particular, for what concerns the flanges and the sealing that have to operate at cryogenic temperatures, we have collected the main parameters as the flange and sealing materials, the dimensions, the closing torque, together with some technical drawings. Besides of that, we collected also the data relative to commercial cold connections as Helicoflex.

The information has been referenced and a list of the papers and the sources of the information are reported at the end of the document.

Document contributors:

INFN Sezione di Milano, Lab. LASA: Paolo Michelato, Laura Monaco, Roberto Paulon.

Summary report on the status of art on ancillaries on the experience of various laboratories involved in SC RF.

Inc	dex	
1.	Introduction	4
2.	Stiffening	9
	2.1. Tesla TTF	10
	2.2. SNS	18
	2.3. RIA	22
	2.4. ADS European program	24
	2.4.1. TRASCO	24
	2.4.2. XADS	27
3.	He vessel	29
	3.1. TESLA/TTF	29
	3.2. CEBAF	34
	3.3. SNS	35
	3.4. RIA	37
	3.5. ADS European program	38
	3.5.1. TRASCO	38
	3.5.2. XADS	39
4.	Cold Flanges and sealing	41
	4.1. TESLA/TTF	41
	4.2. SNS	62
	4.3. ADS European program: TRASCO	77
	4.4. Commercial flanges	84
5.	References	87

1 Introduction

Ancillaries information retrieving: laboratories and projects.

For SC cavities ancillaries information retrieving we analyzed different projects and laboratories: DESY (TTF 1, TTF 2, TESLA, XFEL), CEBAF, SNS, RIA, XADS / TRASCO, JAERI, KEK-B, etc. We concentrated our effort retrieving data relative to cavity stiffening, helium vessels and cold flanges. The final aim is to make available information that will be used in the next future for the improvement of the SC cavities performances and reliability, foreseen in the CARE SRF program. Our work has been organized retrieving information from published papers, drawings, talks, presentations, from the web and private communication.

First is presented a concise summary of the main characteristics of the existing projects in the different laboratories: the rules employed in this first selection are mainly the use of massive Nb cavities, the number of cavities produced/used for the machine, the availability of information, etc. The large part of the document is based on the information available from DESY (TTF 1, TTF2, TESLA, XFEL), CEBAF, SNS, RIA and the European ADS activity.

2/1/2005

	lab.	beam	structure	Cavities and cryomodules	Images	Status
TESLA (TeV Energy Superconduct ing Linear Accelerator)	DESY, TESLA- collaborat ion	Pulsed (RF pulse=1. 3ms)	Electron positron linear collider	9-cell, 1.3 GHz, Eacc = $35MV/m$, β =1; 8-cavities per cryomodule		Only project
TTF I (Tesla Test Facility)	DESY, TESLA- collaborat ion	Pulsed (RF pulse=1. 3ms)	Electron linac, equipped with SASE FEL (saturation @ 80nm)	9-cell, 1.3 GHz, Eacc >15MV/m, β=1; 8-cavities per cryomodule		In operation from 1998 to 2003. Dismissed in 2003
TTF II (Tesla Test Facility)	DESY, TESLA- collaborat ion	Pulsed (RF pulse=1. 3ms)	Electron linac, equipped with VUV SASE FEL	9-cell, 1.3 GHz, Eacc >25MV/m, β =1; 8-cavities per cryomodule		Start operation in 2004
CEBAF (Continuous Electron Beam Accelerator Facility)	TJNAF	CW	Recirculated linac. Designed for 4 GeV (CEBAF I), achieved 6.5 GeV. New goal to 12 GeV in '06 (CEBAF II), 24 GeV in '10, Eacc	5-cell, 1.5 GHz, Eacc = 5MV/m, Q ₀ =2.4x10 ⁹ ; 8 cavities per cryomodule 7-cell, 1.5 GHz, Eacc=12.5MV/m		First layout finished in 1993. Upgraded from 1994 to 2006. In operation
			=12MV/m.	$Q_0=6.5 \times 10^9$; 8 cavities per cryomodule		

project	laborator ies	beam	structure	Cavities and cryomodules	Images	Status
SNS (Spallation Neutron Source)	ANL, BNL, LANL, LBNL,	Pulsed	Accelerator-based neutron source composed by a front-end-system,	6-cell, 805 MHz, β =0.61, Eacc=10.2MV/m, Q=5x10 ⁹ ; 3 cavities per cryomodule		Under constructi on (start in 1999,
	ORNL		linac (from 185 MeV to 840-1300 MeV), accumulator ring, target	6-cell, 805 MHz, β =0.81, Eacc=12.3MV/m, Q=5x10 ⁹ ; 4 cavities per cryomodule	an Matin fin fin fin and started started	will be finished in 2006)
RIA (Rare Isotope Accelerator)	NSCL, MSU, TJNAF	CW	Heavy ions driver linac accelerator (to 400 MeV, 400 kW)	6-cell, 805 MHz, β=0.47, Eacc=8MV/m		Project started in 2000
				6-cell, 805 MHz, β=0.61, Eacc=10.2MV/m, Q=5x10 ⁹ ;		
				6-cell, 805 MHz, β =0.81, Eacc=12.3MV/m, Q=5x10 ⁹ ;	and the first of the first place	

project	laboratories	beam	structure	Cavities and	Images	Status
ADS (Accelerator Driven System) European activity	INFN TRASCO (TRAsmutazione di SCOrie)	CW	Highintensitysuperconductingproton accelerator in3 section @ 700 MHz(5-cell: $\beta=0.5$, 5-cell $\beta=0.65$, $\beta=0.85$).Goal is 100-1600MeV, 25mA	5-cell, 704.4 MHz, β =0.47, E _{acc} =8.5MV/m [1], [2], Q ₀ >10 ¹⁰ [3], Q ₀ =5x10 ⁹ [1]		Project started in 1999. End: 2002.
	PDS- XADS (Experimental Accelerator Driven System) 5th EU program			5-cell, 704 MHz, β=0.65, Eacc =10 MeV/m [4]		R&D on progress Study started in 2001 and finished in 2004.

2 Cavity stiffening

Due to high field and pulsed operation, the Lorentz force produces a detuning of the cavity with respect to the RF supply system. This fact, together with the extremely narrow bandwidth of the SC cavities, forces to develop more stiff accelerating structures.

Recently, stiffening rings have been added also to cavities in not pulsed accelerating structures. This choice is mainly due to the necessity to increase the mechanical stability of the cavities (as in the case of low beta cavities like the TRASCO, SNS and RIA) and to reduce the effect of vibrations (as microphonics).

A summary of data derived from literature and relative to cavity stiffening will be presented, after a brief introduction of main principle of cavity behavior in pulsed RF regime.

2.1 TESLA/TTF

LORETZ FORCE DETUNING AND CAVITY STIFFENING

Design and principal parameters of the 1.3 GHz TTF 9-cell cavity (RF pulses of 1.3 ms) (designed for TESLA-500) [5],[6] are in Table 2.1

Coupling cell to cell	1.98 %
Nominal gradient E _{acc} (TESLA-500)	23.4 MV/m
Quality factor	>10 ¹⁰
Active length	1038 mm
Cell-to-cell coupling K _{cc}	1.87 %
Iris diameter	70 mm
R/Q	1036 Ω
E _{peak} /E _{acc}	2.0
B _{peak} /E _{acc}	4.26 mT / (MV/m)
Tuning range	+/- 300 kHz
$\Delta f / \Delta L$	315 kHz / mm
Lorentz force detuning constant K _L	$1 \text{ Hz} / (\text{MV/m})^2$
Qext	2.5×10^6
Cavity bandwidth (Q _{ext} =3x10 ⁶) [5]	433 Hz
Cavity bandwidth (Q _{ext} =2.5x10 ⁶) [6]	520 Hz

Tab. 2.1: Design and principal parameters of the 1.3 GHz TTF 9 Cell cavity

The mechanical stability is a fundamental problem for RF SC cavities.

The behavior of the cavity depends also on other ancillaries mechanically connected to the cavity, as the helium tank, the tuning system, etc.

The choice of the strategy for the cavity stiffening should be a compromise, for instance, between the cavity mechanical stability (more thick and stable cavities), and the heat exchange capability (more thin cavities, cheaper solution) [7].

At high accelerating gradient the cavity could be driven out of resonance by the submicron mechanical deformations under Lorentz force detuning [7]: the steady state Lorentz force detuning at constant accelerating gradient E_{acc} is:

$$\Delta f = K_L E_{acc}^{2}$$

This quadratic dependence is also reflected in the dynamic Lorentz force detuning during the RF pulse.

The pulsed operation leads to a time-dependent frequency shift of the 9-cell cavities. The stiffening rings joining neighboring cells are adequate to keep this Lorentz-force detuning within tolerable limits only up to the nominal TESLA-500 gradient of 23.4 MV/m., considering a cavity bandwidth of 434 Hz [7] for the TESLA 9-cell specification the of cavity (@ $Q_{ext} = 3x10^6$).

For detailed information about relationship between cavity deformations, the effect of the Lorentz force detuning etc, see for instance reference [7] and [5].

Fig. 2.1: Measurement and calculation of the $K_L[7]$

Actual stiffening geometry and cavity parameters are reported in the following table 2.2:

7- Cell, 1.3 GHZ			
	$000 \text{ H} \oplus 25 \text{ M} \text{ //} [0]$		
Lorentz Force Detuning without stiffening	900 HZ @ 25MV/m [8]		
(cavity thickness of 2.5mm)			
Lorentz Force Detuning with stiffening	About 500 Hz @ 25MV/m for 1.3ms long RF		
(cavity thickness of 2.5mm)	pulse [8]		
Tuning range	+/- 300 kHz [8]		
5 5			
$\Delta f / \Delta L$	315 kHz /mm [8]		
Cav. Bandwidth equip. with RF coupler	430Hz ($Q_{ext}=3x10^6$) [8], 520Hz ($Q_{ext}=2.5x10^6$)		
	[6]		
Stiffening material	Nb [8]		
Stiff. Geometry	Nb ring, welded in between adjacent cells [8].		
	2mm thickness [See fig. 2.4 and 2.5]		
Stiff. Position	56.5mm from the cavity axis		

Tab. 2.2: Actual stiffening geometry and cavity parameters for 9 cells 1.3 GHz

Fig. 2.2: Sketch of the TTF cavity: stiffening ring, reference flange and conical head plate are shown.

Fig. 2.3: 9 cell TTF cavity with stiffening ring and ancillaries [8]

Fig. 2.4: TTF Dumb bell with stiffening ring.

Fig. 2.5: Stiffening ring for TTF cavities

For TESLA-800, the request is to have higher field: Eacc = 35 MV/m [6]: in this case, improvement on the stiffening solution is needed or the cavity deformation must be compensated for instance using a piezoelectric tuner. [6].

Two different strategies have been proposed: the first is based on an improvement of the cavity mechanical properties, the second one foreseen an active deformation compensation using for instance piezo actuators.

- (1) Improvement of mechanical properties
 - (a) plasma spray
 - (b) plasma spray + stiffening rings

(1a) Stiffening by plasma spray

Experimental and computational data shows that the EB welded stiffening rings alone allow a frequency shift of the TESLA 9-cell SRF cavities higher than the cavity bandwidth above Eacc = 28 MV/m [9].

Reference [9] is relative to a proposal of a new stiffening method using a Plasma Sprayed Copper Layer (PSCL) onto bulk Nb cavities. Test of a 1.3 GHz single-cell using the APS (Atmospheric Plasma Spray) technique. Cavity thickness = 2.5 mm of NB (RRR=200), stiffened by 2.5 mm thick copper layer (intermediate 0.2mm thick bonding layer of bronze/aluminum alloy, between Nb and Cu) [9].

In 2001 other tests were performed on a 1.3 GHz TESLA single-cell [10], using a new technique, IPS (Inert gas Plasma Spraying). The following table shows the results.

Coating	3.5 mm Cu layer			
Coating porosity and oxidation	8% and very low oxidation			
Elastic properties				
Young modulus	72 GPa			
UTS	124 MPa			
Porosity	8%			
Maximum elongation	0.2%			
Bond strength	51 MPa			
Thermal properties				
Thermal resistance	2 times higher respect to Nb alone			
Cavity performances				
Before IPS (Nb alone)	30 MV/m			
After IPS (Cu on Nb)	18 MV/m			
After IPS (Cu on Nb) and BCP	25 MV/m			
K _L (before IPS)	$-7.4 \text{ Hz} / (\text{MV/m})^2$			
K _L (after IPS)	$-2.5 \text{ Hz} / (\text{MV/m})^2$			

Tab. 2.3: TTF Cavity performances after the copper deposition: with 2.8 mm thickness of Cu (IPS) K_L goes from -7.4 to -2.52 Hz / $(MV/m)^2$ [7].

Figure 2.6 and 2.7 show the cavity before and after Cu deposition [10].

Fig. 2.6 and 2.7: Nb cavity Cu sprayed.

Calculation relative to the extrapolation for a 9 cell structure indicated that the Cu layer at the iris should be of the order of tens of mm [10]

Implications:

- Technical difficulties in the deposition process
- Higher force for cavity tuning

(1b) Mixed solution: using both the stiffening rings and the Cu coating [7]

Fig. 2.8: Three different stiffenings: a) homogeneous Cu layer 2mm thick, b) Nb stiffening rings and Cu 2 mm, c) Cu layer 1.6mm and iris reinforcement 23mm.[10]

The proposed solution consists of:

- Spraying a 2mm Cu IPS coating on the cavity (reduction of the radial displacements)
- Cavity equipped with stiffening rings (reduction of the axial displacements)

In this case, disregarding the technical difficulties, the cavity stability should be guaranteed until $E_{acc} = 34 \text{ MV/m}$, maintaining the possibility to tune cavity. [7]

Fig. 2.9 : proposed mixed solution [7].

2 - Active deformation compensation using piezo actuators.

In this case, a piezo actuator acts on the cavity compensating the Lorentz force deformation.

Experimental test done at 25 MV/m, with a single pulse to the piezo actuator, indicates that this approach is feasible [11].

Fig. 2.10: detuning reduction by single pulse to the piezo [11]

For higher field (e.g. 35 MV/m) a resonant compensation test have successfully done [11].

2.2 SNS

LORETZ FORCE DETUNING AND CAVITY STIFFENING

SNS uses two different cavities, both at 805 MHz: β 0.61 and β 0.81.

Both cavities have been designed to ensure the following main parameters [12], [13]:

 $E_{surf peak} \le 27.5 \text{ MV/m} @ Eacc = 10.2 \text{ MV/m}$

 $B_{surf peak} < 60 \text{ mT}$ @ Eacc = 10.2 MV/m

 $K_L <-3 Hz/(MV/m)^2$

	$\beta = 0.61, 805 \text{ MHz}$	$\beta = 0.81, 805 \text{ MHz}$
Number of cells	6	6
Material	Nb	Nb
Thickness	3.8 mm	3.8 mm

Tab. 2.4: SNS main cavity parameters [12]

SNS 6-cell $\beta = 0.61$

The basic electromagnetic parameters for the SNS 6-cell β =0.61 are reported in the following table. The data relative to K_L has been calculated for fixed (ideal) boundary conditions [13]

Frequency [MHz]	805
E _{peak} /E _{acc}	2.71
B _{peak} /E _{acc} [mT/(MV/m)]	5.72
R/Q [Ω]	279
$G\left(R_{s}Q_{0}\right)\left[\Omega\right]$	179
Cell-to cell k [%]	1.53
$K_{\rm L} [Hz/(MV/m)^2]$	-2.07

Tab. 2.5: Basic Electromagnetic for the SNS $\beta = 0.61$.

Three medium beta cavities have been fabricated for the cryomodule prototype: their frequencies were within 150 kHz of the target value [13]. One cavity has been equipped with the He vessel prototype TIG welded: the frequency decreased by about 300 kHz [13].

The He vessel for cavity production will be stiffened by welding titanium cones on the two heads to lower the Lorentz force coefficient. [13]

Calculation for the assembly "cavity-He vessel-tuner" resulted in a static Lorentz force coefficient of about 3.64 Hz/(MV/m)^2 [13]. Therefore, further stiffening of the He vessel is necessary to achieve the specified values for the Lorentz force detuning. [14].

The next table shows a comparison between measurement and calculation results, for stiffened and unstiffened cavities, for the K_L [14]. Stiffening was at 70 mm (thickness 3 mm). In the final configuration, the stiffening ring diameter is moved to 80 mm.

$\beta = 0.61$	Calcu	lated values	Measured data
	No stiffening	Stiffening @ 70mm	With stiffening ring
Fixed end	-2.89	-1.65	
Ti frame	-7.85	-7.0	-8.25
He vessel	-4	-3.55	
Free end	-31.1	-27.0	

Tab. 2.6: comparison between calculated and measured data for $\beta = 0.61$ [14]

In 2002 the K_L coefficient of a cavity equipped with He vessel and tuner was measured. [15] Data are in the next table.

β = 0.61	Measured
With He vessel	-7 Hz/(MV/m) ²
With He vessel and tuner	-3 Hz/(MV/m) ²
Model (with He vessel and tuner)	-3.6 Hz/(MV/m)^2
	(considering tuner stiffness = $2x10^6$ kg/m)
	-2.9 Hz/(MV/m)^2
	(considering tuner stiffness = $3.4 \times 10^6 \text{ kg/m}$)

Tab. 2.7: K_L coefficient measurement in 2002. [15]

SNS 6-cell β=0.81

The basic electromagnetic parameters for the SNS 6-cell β =0.81 are in the next table: K_L has been calculated for fixed (ideal) boundary conditions [13]

Frequency [MHz]	805
E _{peak} /E _{acc}	2.19
B _{peak} /E _{acc}	4.72
[mT/(MV/m)]	
R/Q [Ω]	483
$G(=R_sQ_0)[\Omega]$	260
Cell-to cell <i>k</i> [%]	1.52
$K_L [Hz/(MV/m)^2]$	-0.43

Tab. 2.8: Basic Electromagnetic for the SNS β =0.81.

Comparison between measurement and calculation results for stiffened and unstiffened cavities of K_L [14]. Stiffening was at 80 mm (thickness 3 mm) as in the final configuration. Data are in Tab. 2.9.

$\beta = 0.81$	Calculated values		Measured data
	No stiffening	Stiffening @ 80mm	With stiffening ring
Fixed end	-0.78	-0.43	
Ti frame	-3.62	-3.5	-3.5
He vessel	-1.76	-1.58	
Free end	-12.2	-10.1	

Tab. 2.9: comparison between calculated and measured data for $\beta = 0.81$ [14]

Calculations by D. Schrage, LANL

Fig. 2.11: Calculation for the possible vibration mode: stiffening was at 127 mm, for $\beta = 0.61$.[12] The mass production of the cavities for SNS is done by ACCEL. [16].

Fig. 2.12: $\beta = 0.61$ SNS cavity produced by ACCEL [16].

2.3 RIA

Rare Isotope Accelerator employs three kinds of elliptical cavities with β 0.47, 0.61 and 0.81.

Cavities with β 0.61 and 0.81 are the same as the SNS project.

The cavity β 0.47 is the only one that has been developed. [17]

STIFFENING for 6-cell, β=0.47 [18]		
Lorentz Force Detuning with stiffening $K_L = -13.7 \text{ Hz/(MV/m)}^2$, quite high but ok due to the CW		
	machine [19] [20]	
Stiffening material	Nb, Thickness= 3.8 mm	
Stiff. Geometry	Stiffening ring	

Tab. 2.10: RIA $\beta = 0.47$ stiffening parameters.

The high value of the Lorentz coefficient $(K_L - 13.7 \text{ Hz}/(\text{MV/m})^2$, should not be a problem in itself, since RIA is a CW machine but microphonics may be an issue due to the relatively low beam loading. [19].

Fig. 2.13: RIA cavities. Stiffening rings are shown. [21]

Fig. 2.13. a) Drawing of the β 0.47 without stiffening ring. b) Picture of the same cavity during vertical test. c) and d) Drawing and picture of the stiffened β 0.47 cavity. [18]

2.4 European ADS program: TRASCO and XADS

2.4.1: TRASCO

The main parameter of the low beta (β =0.47) 5 cell TRASCO cavity are reported in the Tab. 2.11. [22], [1]

Geometrical parameters [22]		
Cell geometry length (mm)	100	
Cavity length (mm)	900	
Iris diameter (mm)	80	
Cavity thickness (mm)	4.2	
Cavity electromagnetic parameters [22]		
Max E _{peak} /E _{acc}	3.57	
Max B _{peak} /E _{acc}	5.88	
Cell to cell coupling (%)	1.34	
R/Q (Ω)	160	

Tab. 2.11: TRASCO β =0.47 main parameters.

Due to its shape, this cavity has been stiffened with TESLA-like welded stiffening rings in order to reduce the Lorentz force detuning, at the operating accelerating field, from about 1 kHz to 620 Hz [22].

Calculations have been done with an accelerating field corresponding to the maximum nominal peak magnetic field of 50 mT on the cavity walls [22]. Moreover, the thickness of 4 mm together with stiffening rings allows maintaining the stresses in all conditions below 50 MPa [22] (e.g. the stress caused by pressure differences).

Stiffening		
Lorentz Force Detuning with stiffening free ends	-90 Hz/(MV/m)^2 [1]	
Lorentz Force Detuning with stiffening fixed ends	-7 Hz/(MV/m)^2 [1]	
Stiffening material	Nb, thickness 4.2 mm	
Stiff. Geometry	Ring see Fig. 2.14	
Stiff. Position	Ring positioned 70mm from the axis [1], [23].	
Welding	Electron beam welding	
Notes	Stiffening for mechanical stability (CW)	

Tab. 2.12: TRASCO 5-cell cavity, $\beta = 0.47$ cavity stiffening characteristics.

Two 5 cell cavities have been produced, namely Z 501 and Z502. Measurements done at JLAB and SACLAY have show, on the stiffened cavity, K_L value ranging between - 20 to - 47 Hz/(MV/m)² depending on the boundary conditions of the tests. [1].

Fig. 2.14 shows the stiffening ring, Fig. 2.15 the stiffening ring position and the bell profile.

Fig. 2.14: TRASCO stiffening ring .

5

Fig. 2.15: The stiffening ring position and the bell profile [INFN]

2.4.2: XADS

The project is relative to a high power proton CW linac, operating at 700 MHz, with the possibility to operate also as a pulsed machine [7].

Low beta cavities (5-cell $\beta = 0.65$) have been produced and tested.

Cavity parameter [7], [4]	
Cell type	700 MHz 5-cell proton cavities,
	$\beta = 0.65$
E _{peak} / E _{acc} @ 11 MV/m	2.32
H _{peak} / E _{acc}	4.48 mT/(MV/m)
Wall thickness (calculated by stress distribution analysis,	4 mm
under vacuum (2bar))	
Stiffening ring	no

3 He Vessel

Th Helium vessel contains the helium needed for cooling and serves at the same time as a mechanical support of the cavity and as a part of the tuning mechanism. Besides that, it is usually used for the transfer of the forces that the tuning system applies to the cavity.

3.1 TESLA/TTF

Three different models of Helium vessel have been realized for TTF.

The first one was used for the first modules produced.

The second one is to superstructures.

Third model is relative to modules 4 and 5.

Figure 3.1 shows the cross section of the three different models of cryomodules, each model has its own helium tank.

Fig. 3.1: cross section of the three different kind of cryomodules used for TTF.[24]

He VESSEL				
Material	He vessel	Welding	Assembly procedure	Tuning system
	components	technique		
Ti	2 conical	EB	1 Ti bellows is EB welded	The Tuning system is linked to
	head plates	welded to	to the conical Nb head	the He vessel. It consists of a
	(Nb), 1 Ti	Nb.	plate at one side of the	stepping motor with gearbox and
	bellows, 1 Ti		cavity. 1 Ti ring is EB	a double lever arm. Moving
	ring, 1 Ti		welded to the conical Nb	parts operate @ 2 K in vacuum.
	vessel.		head plate at the other	
			side. The cavity is then	
			inserted into the tank.	
			Bellows and Ti ring are	
			TIG welded to the Ti	
			vessel.	

Tab. 3.1: He vessel characteristics [8].

Fig. 3.2: First model of the helium vessel: the two phase feeding tube is on the axis of the structure. [25]

Fig. 3.3: First model of the helium vessel.

A second model of the helium vessel was used for superstructures. The drawing is shown in Fig. 3.4.

Fig. 3.4: Helium vessel for the superstructures.

Modules 4 and 5 (CRY3) use a different helium vessel. Fig. 3.5 shows the new helium vessel.

Fig. 3.5: CRY 3 Helium vessel with SC cavity.

3.2 CEBAF

He VESSEL for 7-cell cavity				
Material	He vessel	Welding	Assembly procedure	Tuning system
	components	technique		
Ti [26]	2 heads (Ti), 2		The heads are welded to a	It consists of a
	bellows (Ti), 1		niobium-titanium transition	coarse mechanical
	cylindrical shell		ring, which is part of the cavity	tuner and a fine
	(Ti), 1 Nb-Ti		end group. The bellows are	piezoelectric tuner.
	transition ring [41].		located near the helium vessel	All the components
	The He vessel has		head opposite the FPC and	are cold, including
	been reduced from		enable cavity tuning. The	the motor, harmonic
	0.61 to 0.25 meter		helium vessel heads are added	drive and
	diameter by moving		to the cavity after any high	piezoelectric
	the RF couplers		temperature baking in order to	actuators.[26]
	outside of the vessel		avoid embitterment of the	
	(2 Ti bellows are		titanium. [26]	
	incorporated into the			
	vessel) [26], [27]			

Tab. 3.2: CEBAF Helium vessel main characteristics

Fig. 3.6: CEBAF He -- tank for 7-cell cavity [28]

Fig. 3.7: JLab "OC" shape, 1.5GHz, 7-cell niobium cavity with helium vessel removed [29]

3.3 SNS

The He vessel design (developed with an ASME pressure vessel code) was dictated by [30]:

- a five-atmosphere internal pressure requirement due to the potential upset condition from loss of beamline vacuum
- a two-atmosphere internal pressure requirement due to the potential upset condition from loss of insulating vacuum

He vessel for 6-cell $\beta = 0.61$			
Material	Ti, Nb/Ti [12]		
He vessel	Bellow: Ti (hydro-formed [16]), Dished head: NbTi (thickness = 6.35 mm) [30],		
components	shell: Ti (thickness = 4.76 mm)		
Dimension	Tubes: diameter = 24 in.=610 mm [30], thickness = = 4.76 mm [30]		
Welding	Ti He vessel TIG welded [13]. The He vessel for cavity production will be stiffened by		
technique	welding titanium cones on the two heads to lower the Lorentz force coefficient [13].		
Assembly	The welding of the helium vessel started with the tack weld of the first head, followed		
and welding	by the cylinder. A three-arm spider is then bolted at the centre of the cavity and then		
procedure	welded to the cylinder. The spider is used to support the cavity against transversal		
	forces. The second helium vessel head is then tack welded to the cavity end dish and to		
	the cylinder. The cavity was then set horizontally on a rotating fixture for full welding,		
	using skip-welding technique. Each helium vessel is equipped with one heater and two		
	diodes for temperature measurement. In one helium vessel per cryomodule, there are		
	also two liquid level probes. [15]		
Tuning	Based on the SACLAY/DESY design for the TESLA cavities, it has been modified to		
system	accommodate the larger 805 MHz SNS cavities. The tuner is mounted on the field		
	probe side of the cavity opposite of the fundamental power coupler. The drive system		
	uses a DC stepper motor, with 1.8 degree per step, run through a harmonic drive for		
	reduction of 100:1 and reliability. The tuner and drive system are completely contained		
	within the vacuum space. The tuner bridges a hydro-formed Ti bellows; it is attached to		
	the Nb cavity beam line and the dished head of the Ti He pressure vessel [30].		
Tuner	Range = 500 kHz, resolution = 60 Hz, Tuning coefficient = 200 kHz/mm,		
requirements	Bandwidth = 1600 Hz, Cavity spring constant = 10000 pounds/inch=115.212 kg/m [30]		

Tab 3.3: SNS 6 cell, $\beta = 0.61$ He tank characteristics and assembly procedure
The support and alignment structure utilize the same double-X pattern of austenitic (Nitronic ® 50) 0.5 cm diameter rods as proven reliable in the CEBAF cryomodule, which has the same diameter He vessel. The cavity has an additional center support internal to the He vessel, which anchors the cavity in the transverse directions, yet allows movement along the beamline axis for cooldown and tuning. Each He vessel is secured in the axial direction via 0.5 cm Nitronic® 50. All of the cavity/He vessel supports have been designed to compensate for the additional loading due to transportation of the cryomodules form JLAB to ORNL [30]

Fig. 3.8: He vessel welding on the SNS β =0.61 cavity [15]

Fig. 3.9: He vessel assembling in cleaning room [31]

3.4 RIA

The helium tank for $\beta = 0.61$ and $\beta 0.81$ are derived from the SNS ones.

Figure 3.10 shows the $\beta = 0.47$ helium vessel. [17]

Fig. 3.10: RIA $\beta = 0.47$ helium vessel

3.5 European ADS program: TRASCO and XADS

3.5.1 TRASCO

TRASCO $\beta = 0.47$ 5 cell cavity was tested only in a vertical cryostat, without any helium tank. The helium tank is under design. The foreseen main parameters are reported in the next table.

	He VESSEL											
Material	He vessel components	Welding technique	Assembly	Tuning system								
			procedure									
Ti	2 Ti disk, NbTi ring, Ti tube	Electron beam	Under design	Coaxial, under								
				design								

Tab 3.4: TRASCO $\beta = 0.47$ 5 cell cavity helium vessel.

3.5.2 XADS

R&D on 700 MHz 5-cell proton cavities, β =0.65.

Stainless Steel He vessel, with a brazed interface between the niobium and the stainless steel.

Test to verify the brazing tightness between a Nb tube and SS have been done, in super fluid He. The results have indicated that the maximal stresses at the brazing area are 150 N/mm² (for Nb tube), 80 N/mm² (for 70 μ m Cu interface) and 60 N/mm² (for the SS flange). An additional load of about 5000 N for each flange have been added to simulate the cold tuning system. Moreover a minimal distance of 9mm between the copper brazed interface and the EB welding of the first cavity iris [32] have to be respected.

He VESSEL $\beta = 0.65$ XADS												
	Cavity tuning p	parameters	Technical	and construction								
F _{Lorentz} (Static longitudinal Lorentz Force)	Δf/ΔL (longitudinal frequency sensitivity)	ΔF/ΔL (longitudinal cavity stiffness)	He vessel components	Welding technique								
13.86 N	13.86 NAbout 250 kHz/mmAbout 1592 N/mmSS tube, SS bellow, Cu interface for brazingBrazing a SS He-tank on the Nb cavity (copper interface)											
Requ	lest on New tanl	stiffening (considering	also the CTS) [32]: Al	bout 20000 N/mm								

Tab.3.5: XADS 700 MHz β = 0.65 He vessel parameters.[32]

The XADS Helium tank is brazed to the Nb cavity and the description here reported is relative to Fig. .

The extremities, normalized 3 mm thick and 400 mm diameter domed cups (1), give a better stiffness than conical ends. For a load applied on the beam tube the longitudinal stiffness can reach about 55 kN/mm, which gives, associated with the cylindrical part of the vessel a total stiffness of about 50 kN /mm.

The SS parts (2) are brazed on the Niobium cut off at a minimal distance of 9 mm from the nearest EB welds. The thickness of these rings is 15 mm to reduce the hoop thermal stresses at the copper interface without over stressing the niobium tube . The de coupling bellow (3) allows 6 mm displacement. Four supports (4) are welded close to the external diameter of the cups (where the tank stiffness is higher) to fix the CTS. The vessel (5), 400 mm diameter, is as close as possible to the cavity equators to limit the volume

available for helium inventory. A 40 mm CF cryogenic port onto the tank (6) is used for the feeding of super fluid helium from an auxiliary pot. Two 16 mm CF ports (7,8) at the bottom of the tank are respectively dedicated to the cool down of the cavity and the relation to the auxiliary pot for the LHe level measurements. [4]

Fig. 3.11:.XADS Helium vessel sketch and picture [32].

Fig. 3.12 Single cell $\beta = 0.65$ with the SS He-tank end caps [32]

4 Cold flanges and sealing

The choice of the cold connection in superconducting accelerator is a critical point.

A cold connection must have the following characteristics: extremely low leak rate (also at low temperature), reliable behaviour (also during thermal cycles), easy to assembly procedure, compatible with clean room environment, cleanable, and finally cheap.

In this document are reported a retrieving of cold connection system used in superconducting accelerators: for every machine a schedule is shown to summarize, for each kind of flanges, the main constructive parameters as the closing torque, the material and the shape of the seal; together with the technical drawings.

Also commercial flanges and seals are used in SC cavity: we collected some information about Conflat CF flanges and Helicoflex.

4.1 TESLA - TTF

TTF Beam flange

TTF Beam flange male							
Material	NbTi						
O.D.	140.0 mm						
Thickness	17.5 mm						
Number of holes	12						
Bolt circle diameter	120.0 mm						
Groove depth	1.0 mm						
External groove diameter	109.2 mm						
Screw	Stud bolt M8 1.4429 (Germany W.N.17007) or X 2 CrNiMoN 17 13 3 (DIN 17006)						
Nut	CuNiSil - Cu5 (DIN 17 672)						
Washer	A4 both sides (UNI 5962)						
Closing torque	28-30 Nm						
Seal	AlMgSi 0,5 Diamond shape (DIN 1746)						
Pipe connection	Electron beam welding						

TTF Beam flange female							
Material							
O.D.	140.6 mm						
Thickness	19.6 mm						
Groove depth	1.9 mm						
Internal groove diameter	96.0 mm						
External groove diameter	109.2mm						
Number of holes	12						
Bolt circle diameter	120 mm						
Screw	Stud bolt M8 1.4429 (Germany W.N.17007) or X 2 CrNiMoN 17 13 3 (DIN 17006)						
Nut	CuNiSil - Cu5 (DIN 17 672)						
Washer	A4 both sides (UNI 5962)						
Closing torque	28-30 Nm						
Seal	AlMgSi 0,5 Diamond shape (DIN 1746)						

I-DEAS model file: desy_cry3.mf1 - INFN Milan

Bauteil sauber und entfettet.

₩ [♥]

DIN 150 0015

DESY-Nerm		₩ V	~~	5		4	~~	1	77		Q		~	DEST beberit nich fuer DEST reserves for this				
Ra (mitro m)	0.025	0.05	1.1	0.2	0.4	0.8	15	1.1	IJ	12.5	25	50	11	Rechts gem. Diff 34 vor occarding to Diff 34				
150 Rouhigkeits Kennzahl	- 11	XI X2		11 112		112	10	144	16	M	117	H	10	HI0	811	K12	V	Fuer Ruschfregen wenden Sie nich bitte en DESF Abtallung TT
	Ailgtoleranzea Ober a, DIN 150 n. 2768 11 u, 12				(Cbe R.	DIN 3	1. Acgb. HH 3142 sder AlMgSi0,5 F22 (3.3206.71)											
Anussa in micro m			-	10100 (MAR), III 150-1302						a	Werkstall: Brinelinderte HB 2,5/62,5 : /0							
-	_	-+-		-	⊢	÷		-+-	Du	tun	+-	None-						
		+		_	⊢	-1	Get.		21.0	50	Ba	nde in	ann M	Cavity Dichtung NW 78				
					t		Gee.			Carlo I	1	-						
							Interr		_									
	_	_				-	DE	S	Y٠	-M	<s< td=""><td>3</td><td></td><td>4 02 1565 / A 002</td></s<>	3		4 02 1565 / A 002				
				_			i ćeni ,	.: D	87.5	1				1 02 1000 / M.002 Blad				
Lust. Aende	prong		Datu		Hat		libiid	ibliathat : Modul_3						Ers. 1. 4 # 3710 / A.W. Ers. 4.				

TTF Coupler flange

TTF Coupler flange male							
Material	NbTi						
O.D.	76.0 mm						
Thickness	12.7 mm						
Number of holes	8						
Bolt circle diameter	63.5 mm						
Groove depth	0.5 mm						
External groove diameter	55.2 mm						
Screw	Stud bolt M6 1.4429 (Germany W.N.17007) or X 2 CrNiMoN 17 13 3 (DIN 17006)						
Nut	CuNiSil - Cu5 (DIN 17 672)						
Washer	A4 both sides (UNI 5962)						
Closing torque							
Seal	AlMgSi 0,5 Diamond shape (DIN 1746)						
Pipe connection	Electron beam welding						

TTF Coupler flange female							
Material							
O.D.	76.3 mm						
Thickness	24.3 mm						
Groove depth	3.6 mm						
Internal groove diameter	-						
External groove diameter	55.2 mm						
Number of holes	8						
Bolt circle diameter	63.5 mm						
Screw	Stud bolt M6 1.4429 (Germany W.N.17007) or X 2 CrNiMoN 17 13 3 (DIN 17006)						
Nut	CuNiSil - Cu5 (DIN 17 672)						
Washer	A4 both sides (UNI 5962)						
Closing torque							
Seal	AlMgSi 0,5 Diamond shape (DIN 1746)						

I-DEAS model file: desy_cry3.mf1 - INFN Milan

TTF Pick up flange

TTF Pick up flange male							
Material	NbTi						
O.D.	33.8 mm						
Thickness	7.1 mm						
Number of holes	6						
Bolt circle diameter	27.0 mm						
Groove depth	0.5 mm						
External groove diameter	20.7 mm						
Screw	Stud bolt M4 1.4429 (Germany W.N.17007) or X 2 CrNiMoN 17 13 3 (DIN 17006)						
Nut	CuNiSil - Cu5 (DIN 17 672)						
Washer	A4 both sides (UNI 5962)						
Closing torque							
Seal	AlMgSi 0,5 Diamond shape (DIN 1746)						
Pipe connection	Electron beam welding						

TTF Pick Up flange female								
Material								
0.D.	34.2 mm							
Thickness	8.5 mm							
Groove depth	1.0 mm							
Internal groove diameter	9.3 mm							
External groove diameter	20.7 mm							
Number of holes	6							
Bolt circle diameter	27.0 mm							
Screw	Stud bolt M8 1.4429 (Germany W.N.17007) or X 2 CrNiMoN 17 13 3 (DIN 17006)							
Nut	CuNiSil - Cu5 (DIN 17 672)							
Washer	A4 both sides (UNI 5962)							
Closing torque								
Seal	AlMgSi 0,5 Diamond shape (DIN 1746)							

I-DEAS model file: desy_cry3.mf1 - INFN Milan

M 1:1

100

Bauteil sauber und entfettet.

 $\stackrel{\text{NI}}{\bigtriangledown} \left[\stackrel{\text{NG}}{\bigtriangledown} \right]$

UN ISO DOTS

DESY-liarm			0000						0 40			Y	8		OESY behall aich für OESY reserves for this				
to inite	la o's	1.025	10.05	his.	Li.	A.A	þ.a	16	41	4.I	125	15	50	DR.	Rechte gan. GR 34 nor arcording to GR 34				
ISO Ros Ka	higheits- innashi	#1	10	ha	144)es	há	10	-		W16	Hert	Htz	V	För Hückfragen version Sa sich bitte an DESY Abtailung IT				
		-			ł	_	-	Ally,	-lui n ci	e# 0	dant	Ober fL. Angh.		ingh.	Mattatube 1:1,5:1				
	Abestly				ł			2748 Toler	1.71 (an)	si. Ti			sdar 1513-1392		AlMgSi0,5 F22 1 3,3206.21) Wetwheth: Brinellhärte HB 2,5762,5 ; 70				
T T	Promotion		T		_	T	1		Т	Du	Fue:	1	New	6					
	0			_		Г		Ger.	T	1.9.9		8	Bandelmann		Caulty Dichtung MW 9				
						T		Expr.		5.1	.97	ß	not	~	Lavity Dictituting NW 0				
						Т		(Lin,						_]	8			
		_						D any	21)									
				-	_		_	DE	S	Y	-M	KS	3		4 98 3710 / A 001	Mett YON			
	Merks	tul I		11.03	101	Da.		Ment.	: TÁ	10/3	ś.	é			3/10 2/10 1 3000	Müttnes			
Zvat	Anders	ind.		thits		Nei	84		115	5Nat					Ers. 4	_			

4.2 SNS

SNS Beam flange

SNS Beam flange male								
Material	NbTi							
O.D.	124.2 mm (4.889")							
Thickness	25.4 mm (1.0")							
Number of holes	12							
Bolt circle diameter	108.3 mm (4.264")							
Groove depth	1.0 mm (0.041")							
External groove diameter	97.6 mm (3.843")							
Screw	A286 (A66286 UNS INCOLOY) 5/16" – 24 [33]							
Nut	Si Br [33]							
Washer	Yes + Belleville [33]							
Closing torque	49.5 Nm (348 inch lbs.) [33]							
Seal	AlMg3 Diamond shape (DIN 1746)							
Pipe connection	Electron beam welding							

	SNS Beam flange female (blank flange)
Material	Stainless steel type 304
O.D.	124.7 mm (4.908")
Thickness	15.5 mm (0.611")
Groove depth	3.1 mm (0.121")
Internal groove diameter	85.3 mm (3.359")
External groove diameter	97.6 mm (3.843")
Number of holes	12
Bolt circle diameter	108.3 mm (4.264")
Screw	A286 (A66286 UNS INCOLOY) 5/16" – 24 [33]
Nut	Si Br [33]
Washer	Yes + Belleville [33]
Closing torque	49.5 Nm (348 inch lbs.) [33]
Seal	AlMg3 Diamond shape (DIN 1746)

SNS Coupler flange

SNS Coupler flange male		
Material	NbTi	
O.D.	124.2 mm (4.889")	
Thickness	17.5 mm (0.69")	
Number of holes	12	
Bolt circle diameter	108.3 mm (4.264")	
Groove depth	1.0 mm (0.041")	
External groove diameter	97.6 mm (3.843")	
Screw	A286 (A66286 UNS INCOLOY) 5/16" – 24 [33]	
Nut	Si Br [33]	
Washer	Yes [33]	
Closing torque	49.5 Nm (348 inch lbs.) [33]	
Seal	AlMg3 Diamond shape (DIN 1746)	
Pipe connection	Electron beam welding	

SNS Coupler flange female (blank flange)		
Material	Stainless steel type 304	
O.D.	124.7 mm (4.908")	
Thickness	15.5 mm (0.611")	
Groove depth	3.1 mm (0.121")	
Internal groove diameter	85.3 mm (3.359")	
External groove diameter	97.6 mm (3.843")	
Number of holes	12	
Bolt circle diameter	108.3 mm (4.264")	
Screw	A286 (A66286 UNS INCOLOY) 5/16" – 24 [33]	
Nut	Si Br [33]	
Washer	Yes [33]	
Closing torque	49.5 Nm (348 inch lbs.) [33]	
Seal	AlMg3 Diamond shape (DIN 1746)	

г

SNS Pick up flange male		
Material	NbTi	
O.D.	46.6 mm (1.835")	
Thickness	7.1 mm (0.28")	
Number of holes	12	
Bolt circle diameter	39.6 mm (1.559")	
Groove depth	0.5 mm (0.021")	
External groove diameter	33.1 mm (1.305")	
Screw	A286 (A66286 UNS INCOLOY) 8-32 [33]	
Nut	Backer ring Al Ni Br [33]	
Washer	Yes + Belleville [33]	
Closing torque	5 Nm (40 inch lbs.) [33]	
Seal	AlMg3 Diamond shape (DIN 1746)	
Pipe connection	Electron beam welding	

٦

This is the old version of the pick up flange. The current design foreseen a change for the number of screw holes, from 6 to 12. See technical draw of the blank flange of page 75.

SNS Pick up flange female (blank flange)		
Material	Stainless steel type 304	
O.D.	47.0 mm (1.85")	
Thickness	7.1 mm (0.281")	
Groove depth	1.3 mm (0.051")	
Internal groove diameter	25.1 mm (0.99")	
External groove diameter	33.1 mm (1.305")	
Number of holes	12	
Bolt circle diameter	39.6 mm (1.559")	
Screw	A286 (A66286 UNS INCOLOY) 8-32 [33]	
Nut	Backer ring Al Ni Br [33]	
Washer	Yes + Belleville [33]	
Closing torque	5 Nm (40 inch lbs.) [33]	
Seal	AlMg3 Diamond shape (DIN 1746)	

71

4.3 TRASCO/XADS

TRASCO Beam flange

TRASCO Beam flange male				
Material	NbTi			
O.D.	124.0 mm			
Thickness	25.0 mm			
Number of Holes	12			
Bolt circle diameter	108.0 mm			
Groove depth	1.0 mm			
External groove diameter	98.0 mm			
Screw	M8 A4-80 (UNI EN ISO 3506-1)			
Nut	M8 A4-80 (UNI EN ISO 3506-1)			
Washer	A4 (UNI 5962)			
Closing torque	30 Nm			
Seal	AlMg3 Diamond shape (DIN 1746)			
Pipe connection	Electron beam welding			

TRASCO Beam flange female (blank flange)				
Material	AISI 316 LN			
O.D.	124.4 mm			
Thickness	20.0 mm			
Groove depth	3.0 mm			
Internal groove diameter	85.3 mm			
External groove diameter	97.6 mm			
Number of holes	12			
Bolt circle diameter	108.0 mm			
Screw	M8 A4-80 (UNI EN ISO 3506-1)			
Nut	M8 A4-80 (UNI EN ISO 3506-1)			
Washer	A4 (UNI 5962)			
Closing torque	30 Nm			
Seal	AlMg3 Diamond shape (DIN 1746)			

Г

TRASCO Main coupler

TRASCO Main coupler male			
Material	NbTi		
O.D.	124.0 mm		
Thickness	25.0 mm		
Number of Holes	12		
Bolt circle diameter	108.0 mm		
Groove depth	1.0 mm		
External groove diameter	98.0 mm		
Screw	M8 A4-80 (UNI EN ISO 3506-1)		
Nut	M8 A4-80 (UNI EN ISO 3506-1)		
Washer	A4 (UNI 5962)		
Closing torque	30 Nm		
Seal	AlMg3 Diamond shape (DIN 1746)		
Pipe connection	Electron beam welding		

TRASCO Coupler flange female (blank flange)				
Material	AISI 316 LN			
0.D.	124.4 mm			
Thickness	20.0 mm			
Groove depth	3.0 mm			
Internal groove diameter	85.3 mm			
External groove diameter	97.6 mm			
Number of holes	12			
Bolt circle diameter	108.0 mm			
Screw	M8 A4-80 (UNI EN ISO 3506-1)			
Nut	M8 A4-80 (UNI EN ISO 3506-1)			
Washer	A4 (UNI 5962)			
Closing torque	30 Nm			
Seal	AlMg3 Diamond shape (DIN 1746)			

TRASCO Pick up flange

TRASCO Pick up flange male				
Material	NbTi			
O.D.	48.0 mm			
Thickness	8.0 mm			
Number of Holes	6			
Bolt circle diameter	39.0 mm			
Groove depth	0.5 mm			
External groove diameter	33.0 mm			
Screw	M4 A4-80 M8 (UNI EN ISO 3506-1)			
Nut	M4 A4-80 M8 (UNI EN ISO 3506-1)			
Washer	A4 (UNI 5962)			
Closing torque	5 Nm			
Seal	AlMg3 Diamond shape (DIN 1746)			
Pipe connection	Electron beam welding			

TRASCO Pick up flange female (blank flange)				
Material	AISI 316 LN			
O.D.	48.3 mm			
Thickness	15.0 mm			
Groove depth	1.3 mm			
Internal groove diameter	25.2 mm			
External groove diameter	33.0 mm			
Number of holes	6			
Bolt circle diameter	39.0 mm			
Screw	M4 A4-80 M8 (UNI EN ISO 3506-1)			
Nut	M4 A4-80 M8 (UNI EN ISO 3506-1)			
Washer	A4 (UNI 5962)			
Closing torque	5 Nm			
Seal	AlMg3 Diamond shape (DIN 1746)			

4.4 Commercial cold connection

In the retrieving of information two kinds of commercial flanges and seals are been taken in account: Conflat CF flanges and Helicoflex.

CONFLAT® (CF FLANGES, ISO DIS 3669)

Usual CF flanges can be used also at cryogenic temperature (see for instance the Varian catalogue).

CF flanges						
	CF 16	CF 40	CF 100			
Material	316 LN	316 LN	316 LN			
O.D.	34.0 mm	69.5 mm	152.0 mm			
Bolt circle diameter K	27.0 mm	58.7 mm	130.3 mm			
h	7.5 mm	13.0 mm	20.0 mm			
Number of holes	6	6	16			
Bolt	M4 X 20	M6 X 35	M8 X 50			
Suggested closing torque	4 Nm	10 Nm	20 Nm			
Seal	copper gasket	copper gasket	copper gasket			
Connection to Nb pipe	brazing	brazing	brazing			

LEYBOLD catalogue 2003-04 page C15.03

Helicoflex

Helicoflex are special metal gaskets, produced by Garlok, which can be used for UHV connections, also operating al cryogenic temperatures. The same company produce also special quick disconnect systems. Helicoflex gaskets were used in SC cavities but, in some cases, they had shown some drawback like difficulties in cleaning the internal spring. [34]

Detailed information of the Helicoflex seals characteristics and suggestions for the correct use can be found on the web: <u>www.helicoflex.com/</u>.

References

- 1] A. Bosotti et al., RF tests of the beta = 0.5 five cells TRASCO cavities, EPAC 2004.
- 2] P. Kneisel, G. Ciovati, RF Test of a 5-cell $\beta g=0.47$ cavity for the TRASCO project.
- 3] D. Barni et al., RF tests of the single cell prototypes for the TRASCO β =0.47 cavities, EPAC 2002.
- 4] B. Visentin et al, Experimental result on 700 MHZ multi cell superconducting cavity for proton linac, PAC2003.
- 5] M. Liepe, Pulsed superconductivity acceleration, LINAC 2000..
- 6] TESLA TDR Chapter 2.
- 7] H. Gassot, Mechanical stability of the RF superconducting cavities, EPAC2002.
- 8] B. Aune et al., Superconducting TESLA cavities, PRST, Accelerator and beams, Vol. 3, 092001 (2000).
- 9] S. Bousson et al., An alternative scheme for stiffening SRF cavities by plasma spraying, PAC1999.
- 10] S. Bousson et al., Inert gaz plasma spraying for cavity stiffening using copper coating, SRF2001.
- 11] P. Sekalski et al., Lorentz force detuning compensation system for the accelerating field gradients up to 35 MV/m for superconducting X-FEL and TESLA nine-cell cavities, CARE-CONF-04-001-SRF.
- 12] P. Kneisel, SC linac cavity physics, talk, https://www.sns.gov/APGroup/ Minutes/ColabMinutes/001024_Kneisel.pdf.
- 13] G. Ciovati et al., Superconducting prototype cavities for the spallation neutron source (SNS) project, SRF 2001.
- 14] G. Ciovati et al., Superconducting prototype cavities for the spallation neutron source (SNS) project, PAC 2001.
- 15] G. Ciovati et al., Superconducting prototype cavities for the spallation neutron source (SNS) project, EPAC 2002.
- 16] M. Pekeler et al., Superconducting cavity production and preparation at Accel Instruments GMBH, SRF 2003.
- 17] T. L. Grimm et al., Superconducting RF activities for the Rare Isotope Accelerator at Michigan State University, SRF2003.
- 18] W. Hartung et al., Status report on multi-cell superconducting cavity development for medium-velocity beams, PAC2003.
- 19] C.C. Compton et al., Niobium cavity development for the high-energy linac of the Rare Isotope Accelerator, PAC2001.
- 20] T. L. Grimm et al., experimental study of an 805 MHz cryomodule for the Rare Isotope Accelerator, LINAC2004.
- 21] T. L. Grimm et al., 805 MHz β = 0.47 elliptical accelerating structure R&D, *http://www.oro.doe.gov/riaseb/wrkshop2003/papers/p-2-2-3.pdf*.
- 22] P. Pierini et al., Cavity design tools and applications to the TRASCO project, 9th Workshop RF Superconductivity, 1999.
- 23] D. Barni et al., SC cavity design for the 700 MHz TRASCO linac, EPAC 2000.
- 24] C. Pagani, TTF Cryomodule operation experience, Talk at First ILC Work 2004.
- 25] S. Bauer et al., Production of the superconducting 9 cells cavities for the TESLA test facility, 9th Workshop RF Superconductivity, 1999.
- E. F. Daly et al., Improved prototype cryomodule for the CEBAF 12 GeV upgrade, PAC2003.
- 27] J. Delayen, Cryomodule development for the CEBAF upgrade, PAC1999.

- 28] I. E. Campisi et al., CEBAF upgrade cryomodule component testing in the horizontal test bed (HTB), PAC2001.
- 29] H. Wang et al., HOM dumping performances of JLAB SL21 cryomodule, PAC2003.
- 30] J. Hogan et al., Design of the SNS cavity support structure, PAC2001.
- 31] H. Padamsee, RF superconductivity 2004, SRF 2004.
- 32] H. Saugnac et al,. Preliminary design of a stainless steel helium tank and its associated cold tuning system for 700 MHz SC RF cavities for proton, SRF2001.
- 33] T. M. Rothgeb et al., Cyclic testing of the SNS DESY style seal, JLAB-TN-02-052.
- 34] K. Zapfe et al., A new flange design for superconducting cavities for TESLA, 8th Workshop on RF superconductivity, Abano Terme, 1997.